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Abstract

3D scene recognition is important for many applications
including robotics, autonomous driving cars, augmented re-
ality (AR), virtual reality (VR), 3D movie and game produc-
tion. A lot of semantic information (i.e. objects, object parts
and object groups) is existing in 3D scene models. To sig-
nificantly improve 3D scene recognition accuracy, we incor-
porate such semantic information into the recognition pro-
cess by building a semantic scene tree and propose a deep
random field (DRF) model-based semantic 3D scene recog-
nition approach. Experiments demonstrate that the seman-
tic approach can effectively capture semantic information
of 3D scene models, accurately measure their similarities,
and therefore greatly enhance the recognition performance.
Code, data and experimental results can be found on the
project homepage1.

1 Introduction

Scene understanding is one of the key questions in the

community of computer vision. It may involve several com-

ponents such as object detection, semantic segmentation,

and scene recognition/classification. 3D scene recognition

is to recognize the category of a given 3D scene which

often involves multiple objects in a scene. It is impor-

tant for a lot of related applications such as robotics [8, 4],

autonomous driving cars [7], augmented reality (AR), vir-

tual reality (VR), 3D movie and game production. Existing

scene recognition/classification algorithms usually consider

a 3D scene model as a common 3D object, and classify 3D

scenes in the same way as 3D object classification. How-

ever, as a common sense, in 3D scene models there exists a

lot of semantic information at different levels, such as object
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3D-scene-recognition/.

level, part level, and object groups level. Neglecting such

important and helpful information during 3D scene classi-

fication or recognition will have significant negative impact

on the performance.

Motivated by the above facts, to significantly improve

the recognition accuracy, we propose a semantic-tree based

scene recognition approach by first building a semantic

scene tree based on the semantic ontology of WordNet [20]

to host related semantic information, and then utilizing this

tree to incorporate such semantic information during the

scene recognition process. Experimental results demon-

strate a significant improvement in recognition accuracy af-

ter utilizing such semantic information. They also prove

that our semantic approach can effectively capture semantic

information of 3D scene models, accurately measure their

similarities, and therefore greatly enhance the recognition

performance.

2 Related work

2.1 Deep learning based 3D scene understanding

According to Goodfellow et al. [13], the human visual

system does much more than just recognizing objects. It is

able to understand entire scenes including many objects and

relationships between objects, and process rich 3D geomet-

ric information needed for our bodies to interface with the

world.

YOLO (v1 [22], v2 [23], v3 [24]) is a state-of-the-

art, end-to-end, one-stage, real-time object detection sys-

tem. It can be used to detect objects either from videos

or images. Compared with other object detection methods,

YOLOv3 [24] has faster image processing speed and we

adopt it in our object occurrence prediction in Section 4.2.2.

Based on YOLOv1 [22] and YOLO9000 (v2) [23], in or-

der to improve the performance, YOLOv3: (1) improves

its backbone net structure (from v2’s darknet-19 to v3’s

darknet-53, which has deeper layers); (2) changes the loss

function (from softmax to logistic loss) to solve the problem
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of overlapping labels (e.g., woman and person); (3) adopts

multi-scale predictions to solve the problem that small ob-

jects cannot be well detected.

Zhao et al. [29] proposed a framework to parse scene

images at both pixel feature and word concept levels by

jointly embedding the two levels of information into a

high-dimensional vector space. At the word concept level,

they incorporated the semantic word-word relations (hyper-

nym/hyponym) based on WordNet [20] and compared their

jointly embedding framework with other models, such as

Word2Vec [19] and demonstrated better performance.

Choi et al. [12] proposed a hierarchical visual scene

understanding model named 3D Geometric Phrase Model,

which captures both semantic and geometric relationships

of the objects in a scene, as well as their grouping informa-

tion. Su et al. [26] devised a multi-view convolutional neu-

ral network (MVCNN) framework for 3D shape recogni-

tion by first learning features from multiple rendered views

of a 3D model via a CNN model, and then fusing all the

extracted features via a max-pooling like view pooling ap-

proach, and finally using another CNN as a classifier for

the 3D shape recognition. We also utilized the MVCNN

framework in our approach. PointNet [21] is a deep neu-

ral network designed on top of point clouds, and it directly

consumes point clouds. Such an interaction better preserves

the permutation invariance of points in the input, and thus

mitigates the issues caused by transforming point cloud to

regular 3D voxel grids or collections of images. The pro-

posed unified architecture is applicable for a wide range of

applications including object classification, part segmenta-

tion and scene parsing, and has demonstrated promising re-

sults, as well.

2.2 WordNet and its semantics-driven multimedia
applications

WordNet [20] is a lexical database of concepts/synsets,

represented by a set of synonyms. Each node in the tree

represents one word, which has one or more senses (mean-

ings). Each sense has its synset and a set of words are

related through the following three relationships: hyper-

nyms/hyponyms (IS A relation), holonyms (MEMBER OF

relation) and meronyms (PART OF relation). As a lexical

dictionary of semantic concepts, WordNet has been widely

applied in semantics-driven multimedia applications.

Marszalek and Schmid [18] proposed to utilize Word-

Net to build a semantic and hierarchical graph for the visual

objects to be recognized. Based on labeled training data,

they learned a binary classifier for each node in the graph.

Wang et al. [27] proposed to build an ontology based on

WordNet for a 3D model benchmark, infer 3D semantic

properties by a rule engine based on Semantic Web Rule

Language (SWRL), and perform semantic retrieval using

the ontology. WordNet has been extensively used in vi-

sual understanding [1], at image (object)-level (i.e., Ima-

geNet [25]), 3D model level (i.e., ShapeNet [10]), scene-

level (i.e., Places [30]), and video (activity)-level (i.e., [14]).

In addition, it is also used as a knowledge graph (like Free-

base [5] for generic human knowledge, and GeneOntol-

ogy [3] for biology). It is also useful for natural language

understanding [6], and building its connection to visual un-

derstanding, such as Visual Genome [15].

3 Semantic tree-based 3D scene model recog-
nition — a deep random field (DRF) model

3.1 Overview

In this paper, we propose a semantic tree-based 3D

scene model recognition approach. We follow the recog-

nition framework of multi-view convolutional neural net-

work (MVCNN) [26] for 3D scene recognition, while we

also incorporate semantics loss during the learning process

and propose a deep random field (DRF) model. As illus-

trated in Fig. 1, our approach is composed of the following

five steps.

(1) 2D Scene Semantic Tree construction: build a

Scene Semantic Tree (SST) for 3D scene models selected

from the currently largest large-scale online 3D model

repository 3D Warehouse [2], as described in Section 3.2.

This semantic tree forms a network of semantic classes, at-

tributes (i.e., semantic objects), and 3D scene model files.

(2) 3D scene view sampling: since most (i.e., >90%)

of the collected 3D scene models are in the upright posi-

tion, starting from the front view, we sample 13 views for

each 3D scene by first uniformly setting 12 cameras along

the equator of the bounding sphere of the model and then

raising their elevation angle by 20 degrees, together with a

bird’s-eye view generated by setting the camera on the north

pole of the sphere.

(3) Semantic object instance segmentation: segment

each scene view image into a set of consistent semantic ob-

jects. For example, as shown in Fig. 1, a view image of

a 3D kitchen is segmented into the following semantic in-

stances: several bottles, bowels, chairs, forks, tables, and

wine glasses, together with a TV. These object categorical

names, together with their number of appearances, form the

semantics of the scene view.

(4) Semantic loss computation: compute the semantic

similarity between the semantics of the unknown 3D scene

model and that of each target scene category, based on the

appearing scene objects’ categorical names and their num-

bers of occurrence in the corresponding scene view images

and the semantic information of the target category pre-

learned in Step (1).
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Figure 1: Semantic tree-based 3D scene model recognition approach: a deep random field (DRF) model. {O, p} is used to represent the

object occurrence distribution of each scene category: O means an object class, while p is its occurrence probability in that scene.

(5) Joint loss VGG-based recognition (DRF): similar

to MVCNN, we use the VGG16 framework to train our

DRF model, but replace its loss function by a joint loss

which combines VGG’s cross-entropy loss and semantic-

tree based loss, which will be detailed in Section 3.3. Fi-

nally, we utilize the trained DRF model to recognize each

testing 3D scene model.

3.2 Scene Semantic Tree construction

Semantic information extraction. The YOLOv3 [24]

model is adapted to help us detect all the possibly ap-

pearing objects in each 3D scene model. However, the

original pre-trained YOLOv3 model can detect only 183

classes [17] existing in COCO stuff [9], a dataset for large-

scale object detection, segmentation, and captioning, we

often need to enlarge the training dataset to make it also

contains manually-annotated object instances for other ad-

ditional object classes. For example, in our experiments

(Section 4.2.1, we add 27 additional classes whose names

can be found on the project homepage. It is important and

necessary since these object classes may have a high chance

to appear in certain scenes. For example, desert is one of the

30 scene classes of the benchmark, while cactus objects are

often present in desert scenes.

Assume the set of all possible object classes is

O={O1, . . . , On}. Based on YOLOv3, we detect the num-

ber of occurrence ci of each object class Oi in a scene view

generated from the training dataset, thus forming the ob-

ject occurrence statistics C={c1, . . . , cn}. We then train a

simple 9-layer DNN model based on the statistics to learn

an object occurrence probability distribution to estimate the

chance that each object will appear in a 3D scene, and this

distribution is regarded as the scene semantics information

of that scene: Object occurrence probability {P (Oi|S)}
indicating the conditional probability that an object class Oi

appears in a scene S. The number of nodes in each layer of

the DNN model is: 500, 625, 500, 400, 600, 300, 200, 120,

and 210, respectively.

Scene Semantic Tree definition. WordNet [20] provides

a broad and deep taxonomy with over 80K distinct synsets

representing distinct noun concepts arranged as a directed

acyclic graph (DAG) network of hyponym relationships

(e.g., “table” is a hyponym of “furniture”). As shown in

Fig. 1, a Scene Semantic Tree (SST) is a hierarchy of classes

with corresponding 3D scene models organized based on

the semantic hierarchy in WordNet synsets. Each class

(synset) of the Scene Semantic Tree has several attributes

(i.e., via is-a, has-part, or is-made-of relations) according

to its gloss defined in WordNet. Each leaf node of the

Scene Semantic Tree has a number of 2D images belong-

ing to the leaf node class. It also contains the scene seman-

tics information (Object occurrence probability) learned in

Section 3.2. Therefore, the Scene Semantic Tree forms a

network of classes, attributes (i.e. scene object categori-
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cal names and their estimated distribution), and related 3D

scene model files.

3.3 Joint loss definition and DRF model training

The standard way to classify the objects in a scene or

an image is to treat each object independently and train a

deep neural network (DNN) to classify each object. To im-

prove the recognition accuracy, we plan to incorporate the

semantically relatedness relationships between the detected

scene objects’ labels and the candidate scene category la-

bels into the training and prediction, as well, by utilizing the

Scene Semantic Tree. For example, an object table detected

from an unknown scene is more likely to help us classify the

scene to be kitchen or restaurant rather than phone booth or

shower, because table is a “PART OF” kitchen or restaurant
— they are more semantically related. We name our model

as deep random field (DRF), because the way to encode the

relationships resembles Markov random fields [11]. The

loss function of our DRF model is,

L = λLDNN + (1− λ)LSST({Ri ∗ ci}, {P (Oi|S)}),

where, LDNN and LSST are the standard loss of a DNN

classifier and the semantic loss based on the Scene Seman-

tics Tree (SST), respectively, while both are defined based

on the cross-entropy loss function (binary cross-entropy

(BCE) for LSST); λ is a hyper-parameter that represents the

strength of the standard DNN part; Ri is the WordNet-based

semantic relatedness between two semantically related con-

cepts: the object class name Oi and a candidate scene cat-

egory S to classify the scene view. In our experiments, we

adopt the Lesk [16] algorithm as the relatedness measure-

ment; ci is the detected number of occurrences of Oi in the

scene view image; {P (Oi|S)} is the scene semantics infor-

mation of S learned in Section 3.2. The learning will be

optimizing the loss function to jointly estimate the weights

of DNN. Before loss combination, we scale both DNN and

semantic losses to be in the range of [0, 1].

4 Experiments and discussions

4.1 Dataset

We conduct a comprehensive evaluation of our se-

mantic scene recognition algorithm based on the latest

sketch/image-based 3D scene retrieval benchmark built by

us, named Scene SBR IBR [28]. Scene SBR IBR was

also used by us in organizing two 2019 Eurographics Shape

Retrieval Contest (SHREC’19) tracks on 3D scene shape

retrieval. It contains three subsets: 750 2D scene sketches,

30,000 2D scene images, and 3,000 3D scene models. All

the 2D sketches/images and 3D scene models are equally

classified into 30 classes. For each class, 18 sketches, 700

images and 70 models were randomly chosen for training

while the rest 7 sketches, 300 images and 30 models were

kept for testing. We utilize its 3D scene subset (testing

dataset portion) to evaluate our 3D scene recognition algo-

rithm, while using its image subset (training dataset portion)

for scene semantic information extraction (See Section 3.2

for details and results in Section 4.2), considering its much

larger size than that of the 3D scene dataset, much higher

overall accuracy in scene details, and much more realistic

scene features. A 3D scene example and a 2D scene image

instance for each class are demonstrated in Fig. 2 (a) and

(b), respectively.

(a) models (b) images

Figure 2: 3D target scene model and 2D scene image examples in

our Scene SBR IBR benchmark. One example per class is shown.

4.2 Semantics learning results

4.2.1 Scene object categories

To learn the scene semantics information for the target 3D

scenes in the Scene SBR IBR benchmark, we choose the

maximum number of possible different object categories

that may appear in the 3D scenes to be 210 by adding 27

additional classes, together with their manually annotated

object instances to meet the needs of the Scene SBR IBR
benchmark. The list of the 27 additional classes can be

found on our project homepage.

4.2.2 Object occurrence probabilities

By following the approach presented in Section 3.2, for

each scene category, we first adopt YOLOv3 [24] frame-

work to detect the objects in each scene image within the

category to form the image’s scene object statistics, and

then individually employ a 9-layer deep neural network to
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(a) top 30 classes

(b) all the 210 classes

Figure 3: Object occurrence probabilities for the airport terminal

scene category.

train on all the obtained object statistics of the scene images

to build the object occurrence probability for that scene cat-

egory. Fig. 3 shows an example result on the airport ter-

minal scene class. Similarly, all the 30 scene categories’

object occurrence probability distributions are available on

the project homepage.

4.3 3D scene recognition results

We evaluate our DRF approach based on the testing

dataset of the 3D scene subset of the Scene SBR IBR
benchmark, and compare with the adapted MVCNN [26]

approach (i.e., using the Places365 [30] pretrained model

for the VGG part) for 3D scene recognition, which was

named scene-based MVCNN (sMVCNN) by us. As de-

scribed in the Section 3, DRF shares with MVCNN in terms

of the recognition framework but incorporates the addi-

tional semantic-tree based loss into the loss function defi-

nition. Since we are dealing with scene models, rather than

single object models like MVCNN, we adopt the scene im-

age recognition model Places365 which is also based on

VGG.

Firstly, we respectively train sMVCNN and DRF based

on the training dataset (sampled scene images) of the tar-

get 3D scene dataset Scene SBR IBR, by starting with the

Places365 pretrained model [30] or a randomly initialized

Places365 model. We search the best λ values based on

a coarse-to-fine grid search with a search step of 0.1 and

0.01, respectively. The best λ values are 0.67 and 0.57

for DRF started with a pre-trained and randomly initialized

Places365 model, respectively. Secondly, we test the trained

sMVCNN and our DRF model with the corresponding test-

ing dataset based on their scene images as well. Table 1

compares their recognition accuracies.

Table 1: Scene recognition accuracy comparison on the testing

dataset of Scene SBR IBR.

Accuracy Pre-trained Randomly initialized
sMVCNN [26] 0.529 0.537

DRF (Our) 0.594 0.585

We can find that on the Scene SBR IBR dataset, for

either way of model initialization, after incorporating the

scene semantic information, our DRF has achieved an im-

provement of 12.3% and 8.94% in the accuracy, respec-

tively, if compared to sMVCNN which does not consider

the available scene semantic information. This demon-

strates that our semantic-tree based approach has success-

fully captured the scene semantic information existing in

the 3D scenes, and also accurately measured their similar-

ities, thus significantly improved the 3D scene recognition

performance.

5 Conclusions and future work

Our work aims to address the challenges in 3D scene

recognition. We develop a probabilistic deep learning algo-

rithm which incorporates the semantic relationships of the

objects into the scene semantics learning process. The se-

mantic information contains objects’ occurrence informa-

tion. Experiments demonstrate that the semantic approach

can effectively capture semantic information of 3D scene

models, accurately measure their similarities, and therefore

greatly enhance the recognition performance.

We plan to expand the definition of semantic in-

formation to also include the following two additional

pieces of semantic information: objects co-occurrence

and spatial relations. (1) Object co-occurrence prob-
ability {P (Oi, Oj)|S)}: the conditional probability that

both of two object classes Oi and Oj appear simultane-

ously in a 3D scene S; (2) Spatial relation probability
{P (SR(Oi, Oj)|S)}: the conditional probability that two

object classes Oi and Oj have a certain spatial relation (SR,

a spatial preposition) in S , e.g., SR(Oi, Oj) = support /

surround / near, that is, Oi supports / surrounds / is near to

Oj .
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